presentation a broad overview of the genus and the scope of the intended taxonomic revision are discussed. The revision will contribute towards filling knowledge gaps through documenting and describing a number of new species, providing updated descriptions, extension of herbarium collections (including sampling for molecular analyses), and updating keys and distribution maps for all species in the genus.

P22
The e-Flora of South Africa: achievements and progress of the past four years

M.M. le Roux1,2, R.R. Klopper1,3, J.E. Victor1
1South African National Biodiversity Institute. Private Bag X101, Silverton 0184, South Africa
2Department of Botany and Plant Biotechnology, University of Johannesburg, Post Office Box 524, Auckland Park 2006, South Africa
3Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0001, South Africa
E-mail: m.leroux@sanbi.org.za

A Flora provides taxonomic and descriptive information for all plants within a defined geographic region. It is traditionally compiled by one to several contributors and published in hard copy volumes. Floras often take long to complete and quickly become outdated with difficulty of publishing updated versions. However, with the availability of electronic tools, Flora compilation can be approached in innovative ways to overcome challenges. South Africa has committed to compile and contribute a National Flora towards the Global Strategy for Plant Conservation, Target 1 [World Flora Online (WFO)] by 2020. The preliminary WFO portal was launched at the International Botanical Congress in China during July 2017. To contribute a National Flora towards the WFO, South Africa has to embrace new methods of Flora compilation by using electronic tools and following an aggregator portal approach. This entails the use of published information by acquiring permission from copyright holders, digitising material where it only exists in hard copy, mining the required data from the publication, aggregating it into a database and publishing it online in open access. Information currently available for this endeavour covers ca. 85% of the South African flora. Conspectuses currently being compiled will provide information for the remaining 15%. A brief overview of Flora compilation in South Africa will be presented along with a progress report of the past four years’ activities and the South African contribution towards the WFO.

P21
A taxonomic study of the Thesium confine species complex

K.S. Mashego1, M.M. le Roux1,2
1South African National Biodiversity Institute, Biosystematics Research and Biodiversity Collections Division, Private Bag X101, Pretoria, 0001, South Africa
2Department of Botany and Plant Biotechnology, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
E-mail: kagisosharlene@gmail.com

Thesium L. (Santalaceae; sandalwood family) includes about 325 species and is distributed throughout the temperate and tropical regions of both hemispheres. However, its center of diversity is in southern Africa. The most recent taxonomic revision of the southern African species dates back to 1925 by Hill. A revision of the genus is urgently required as
indicated in *A Biosystematics Research Strategy for Plant Taxonomic Research in South Africa (2015–2020)*. A taxonomic study of the *T. confine* Sond species complex (*T. confine* Sond, *T. durum* Hilliard & B.L.Burtt and *T. spartioides* A.W.Hill), was conducted as a contribution towards a comprehensive revision. These species have flowers arranged in relatively short, dense spikes, petal lobes covered with dense, long papilla and ovaries twisted. Literature and specimens from Global Plants (JSTOR), K, NU, PRE and PRU, including type specimens, were studied. Measurements and photos of vegetative and reproductive characters were taken. The results showed a strong similarity between *T. spartioides* and *T. confine*. Both species have the same spreading-decumbent herbaceous habit with wiry branches and axillary and terminal inflorescences. *Thesium durum* differs from *T. confine* in having an upright, woody habit with thick, stout branches and axillary inflorescences. Nomenclature, typification, diagnostic vegetative and reproductive characters and distribution maps will be presented.

P23

The genus Grielum (Neuradaceae) in southern Africa

M.J. Mutuwa, N. Swelankomo

School of Mathematics and Natural Sciences, Department of Botany, University of Venda. P.O.Box 322, Mashau 0943, South Africa

E-mail: marubinijessicamutuwa2@gmail.com

The family Neuradaceae in southern Africa includes the two genera *Grielum* L. and *Neuradopsis* Bremek. & Oberm. The two genera are readily distinguished by their fruits, *Grielum* with knob-like spines on the fruits and *Neuradopsis* with three series of sharp spines with the tips either straight or incurved. The genus *Grielum* includes four accepted species, occurring in Namibia, Botswana, Northern Cape, Western Cape, Eastern Cape, North West and Gauteng. All the species are endemic in dry sandy soils of southern Africa. The genus *Grielum* is economically important as some species are highly palatable to game. This genus was last revised in *Flora Capensis* by Harvey (1862) and we provide a modern taxonomic treatment, including a key to the species, typification, distribution maps and illustrations.

P24

Pachycarpus E.Mey. section ‘Trichocodon’

M.N. Nkwanyana¹, S.P. Bester¹,²

¹*National Herbarium, South African National Biodiversity Institute, Pretoria, South Africa*
²*Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa*

E-mail: M.Nkwanyana@sanbi.org.za

Pachycarpus is an endemic sub-Saharan African genus belonging to the Apocynaceae consisting of 38 accepted species (42 taxa), 63% of which are found widespread in high grasslands of southern Africa excluding Namibia and Botswana. Previous workers on the group have treated *Pachycarpus* and ‘*Trichocodon*’ either as different sections or even as different genera. In this presentation the seven taxa referred to in ‘*Trichocodon*’, namely *Pachycarpus campanulatus* (with subspecies *campanulatus*, *sutherlandii* and *gerrardii*), *P. linearis*, *P. stelliceps*, *P. suaveolens* and *P. rostratus*, are compared. *Pachycarpus* is characterised as erect, slender, perennial herbs with milky latex and either tuberous rootstocks or fusiform roots. The