Search for SANBI documents

Including all scientific publications, brochures, pamphlets, workshop reports and proceedings and Biodiversity Heritage Library materials.


Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12143/6077
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTsele, Philemon-
dc.contributor.advisorBotai, Joel-
dc.contributor.authorMafanya (SANBI), Madodomzi-
dc.date.accessioned2018-10-05T07:04:30Z-
dc.date.available2018-10-05T07:04:30Z-
dc.date.issued2018-05-01-
dc.identifier.urihttp://hdl.handle.net/20.500.12143/6077-
dc.subjectobject-baseden_ZA
dc.subjectimage classificationen_ZA
dc.subjectsemi-automateden_ZA
dc.subjectremote sensingen_ZA
dc.subjectHarrisia pomanensisen_ZA
dc.subjectInvasiveen_ZA
dc.titleFramework for semi-automated object-based image classification of invasive alien plant species in South Africa: Harrisia pomanensis as a case studyen_ZA
dc.journal.numberofpages84en_ZA
dc.journal.cityPretoriaen_ZA
dc.journal.academicdepartmentDepartment of Geography, Geoinformatics and Meteorologyen_ZA
dc.journal.degreeMaster of Science in Geoinformaticsen_ZA
dc.journal.thesistypedissertationen_ZA
dc.journal.yearofpublication2018en_ZA
dc.journal.shorttitleObject-based image classification of invasive alien plant speciesen_ZA
dc.journal.universityUniversity of Pretoriaen_ZA
Appears in Collections:Thesis

Files in This Item:
File Description SizeFormat 
Dissertation_M_Mafanya.pdfDissertation2.32 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.